faculty nav

 

 

Michael D. Sheets

michael sheets

Associate Professor

Office:
5260B Biochemical Sciences Building
440 Henry Mall
Madison WI 53706
Postal address click here

Office: (608) 262-9452

Fax: (608) 262-5253

mdsheets@wisc.edu


Education

  • B.S. 1982, Purdue University;
  • Ph.D. 1989, University of Wisconsin;
  • Postdoctoral 1990-1992, University of Wisconsin (M. Wickens); Postdoctoral 1992-1996, University of California, Berkeley (J. Gerhart).

Honors & Awards

  • American Cancer Society Fellow, 1995;

  • March of Dimes Basil O'Connor Scholar, 1997;

  • Pew Scholar, 1998; Beckman Young Investigator Award, 1998.


Research Interests

Post-transcriptional control of vertebrate development. In all animals, temporally and spatially regulated post-transcriptional events direct development during the first hours following fertilization. These post-transcriptional events regulate the expression and/or the activity of maternally derived determinant proteins that control embryonic cell-fate decisions. Our studies of Xenopus laevis embryos have revealed that the expression and activity of specific maternal determinants are regulated by mechanisms that control the translation of maternal mRNAs (McGivern et al 2008, Zhang and Sheets 2009a, and Zhang et al, 2009b) and mechanisms that control the phosphorylation of determinant proteins (McGivern et al 2009).

Regulated mRNA translation is an important mechanism for regulating early cell-fate decisions in vertebrate embryos. Embryonic cells destined to specific fates accumulate distinct determinant proteins encoded by maternal mRNAs. These determinant proteins often function in cell-signaling pathways that direct the activation of select genes in only certain embryonic cells. For embryonic development to proceed normally, the expression of maternal determinants must be tightly controlled both temporally and spatially.

The Xenopus xCR1 protein is a receptor of the nodal signaling pathway, and vertebrate development requires the precise activation of this pathway at a specific time and place during embryogenesis. This requirement is met by restricting the accumulation of xCR1 protein to the animal cells within the developing embryo through the regulated translation of the maternal xCR1 mRNA (Zhang and Sheets, 2009). The maternal xCR1 mRNA is translated in animal cells while the xCR1 mRNA in vegetal cells is translationally repressed. The functional unit of mRNA translation is the mRNP that consists of the relevant mRNA regulatory sequences associated with specific RNA binding proteins. We have defined the mRNP that mediates repression in vegetal cells as consisting of the xCR1 mRNA’s 3’ UTR associated with the Pumilio and CUG-BP1 proteins (Zhang and Sheets, 2009). We are currently focused on understanding the mechanisms by which the xCR1 mRNP represses translation in one cell type but not the other. These mechanisms are key to understanding not only the spatially regulated translation of the xCR1 mRNA, but how such translational events control the earliest cell fate decisions made during vertebrate development.


Recent Publications

Zhang., Y., Forinash, K., McGivern, J., Dorey, K., Fritz, B. and M.D. Sheets (2009) Spatially regulated translation of the xCR1 mRNA in Xenopus embryos. Mol Cell Biol. Jul;29(13):3791-802.

McGivern, J., Swaney, D., Coon, J.J., and M.D.Sheets (2009) Phosphoproteomic analysis of Xenopus laevis embryos. Developmental Dynamics. Apr 21;238(6):1433-1443. PMID: 19384857

Zhang, Y and M.D.Sheets (2009) Analyses of zebrafish and Xenopus oocyte maturation reveal conserved and diverged features of translational regulation of maternal cyclin B1 mRNA. BMC Dev Biol. Jan 28;9:7. PMID: 19175933

McGivern, J., Song, J., Markley, J. and M.D. Sheets (2008) Molecular properties of Xenopus ePABP2; identification of structural domains required for poly (A) binding Proc Natl Acad Sci (U S A);105(40):15317-22. PMID: 18824697

Mitchell TM, Jones EA, Weeks DL and M.D. Sheets (2007) Chordin affects pronephros development in Xenopus embryos by anteriorizing presomitic mesoderm. Dev Dyn. 2007 Jan;236(1):251-61.

Perform a customized PubMed literature search for Dr. Sheets.

 

 

University of Wisconsin - Department of Biomolecular Chemistry
First published: 01/01/05 Last updated: 1/18/05 Email Biomolecular Chemistry
Copyright © 2005 The Board of Regents of the University of Wisconsin System

 

 
           
graduate program joshua coon biomolecular chemistry home department faculty jon audhya paul bertics david brow george craciun james dahlberg john denu robert fillingame catherine fox melissa harrison christina hull james keck tricia kiley bmc courses events calendar department info contact info deane mosher